手机浏览器扫描二维码访问
徐云:“????”
不是吧?
真就知男而上啊?
就在他准备默默离开帐篷之际,汤姆逊忽然又说道:
“在笛卡尔坐标系中,你选的这条切线若是在下面,那么顶点法线就会出现变化。”
“如此一来...看到了吗?它们三维空间下的方向就很可能不垂直......”
“而切线空间定义于每一个顶点之中的话呢,就还需要两个步骤才能得到规范化的TBN矩阵......”
“对了威尔,我说的会不会太快了?需不需要再放回刚才的速度?”
“不用,威尔逊先生,我能跟得上。”
“很好,那我就继续了。”
徐云:“......”
wtf?
这两个人男人居然大半夜的躲在被窝里一起学数学?
这tmd好像比互通有无更离谱吧......
随后徐云使劲揉了揉脸颊,认真听起了内容。
接着很快他便确定,汤姆逊和威尔正在讨论的是矩阵和切线空间的问题。
矩阵。
这东西是高等代数学中的常见工具,在古代的中西方数学史上,都能隐约见到过类似矩阵的影子。
例如成书最早在东汉前期的《九章算术》。
在这部算经中,就用分离系数法表示除了线性方程组,得到了其增广矩阵。
接着在消元过程中。
使用的把某行乘以某一非零实数、从某行中减去另一行等运算技巧,就相当于矩阵的初等变换。
但遗憾的是,那时并没有现今理解的矩阵概念——虽然它与现有的矩阵形式上相同。
因此在当时,这种方法只是作为线性方程组的标准表示与处理方式。
这就和之前提及过的天文历法一样。
它们都属于华夏古代有早期应用,但却没有找到正确方向的工具。
至于现代矩阵的萌芽呢,则出现在高斯时期。
后来由阿瑟·凯利在1858年正式提出矩阵论,他也是公认为的矩阵论的奠基人。
至于再往后就是弗罗伯纽斯和埃尔米特、庞加莱的事儿了,并且最终发展到了目前的常用矩阵模块。
看到这里。
父亲惨死,林易放弃挚爱的初恋入赘陈家,他发誓一定要爬到权力的巅峰,调查出当年的真相!...
官场失意,情场便得意,逛街都能捡着大美女,岂料此美女竟...
傲世神婿别人重生,要风得风,要雨得雨!n而陈玄重生,却成了刚出狱的劳改犯,惨遭狗男女背叛的悲催青年!n只是从头再来又有何惧?n从此陈玄一手握回天之术,权势滔天也得低头!一手持绝世利刃,报恩也报仇!各位书友要是觉得傲世神婿还不错的话请不要忘记向您QQ群和微博里的朋友推荐哦!...
自幼被一个神秘老头当成超级医生培养的孤儿叶修,为了躲避神秘势力的追杀,积蓄力量复仇,回到华夏国,进入燕京城郊区一个小医院成为了一个普通医生,想要低调平静地过日子,却接连遇到各式美女,令到生活陷入一个又一个艳遇和艳遇带来的漩涡之中...
想知道我变强的秘诀?我告诉你艺术源于爆炸,甩锅才能变强!这是一个靠着甩锅加点走上忍界巅峰的故事。...
老兵朱高远,穿越成为吊死煤山的崇祯皇帝。凭借熟知的历史知识及高超的战术指挥能力,率领千余残部成功的从朝阳门溃围而出。继而出人意料转进燕山,躲过流贼大军追剿。继而设计兼并了吴三桂派去劫驾的一千夷丁。一片石大战爆发后,又率领两千明军长驱南下。流贼惨败退出北京,建奴南下,朱高远凭借着结硬寨打呆仗的战术死守黄淮防线。...