手机浏览器扫描二维码访问
因此对于徐云的思路,周绍平确实双手赞同。
在周绍平做出决定后。
徐云便不再迟疑,开始计算起了绕y轴旋转算符的矩阵元。
这其实不是一件容易活儿。
旋转矩阵和费米面一样,也是一个涵盖多领域的玩意儿。
比如shader也就是编程领域中就也有旋转矩阵,不过shader的旋转矩阵很容易。
只要通过正余弦关系做正余弦展开,然后做成矩阵相乘的格式,再用三个向量点乘充当正交基底就行了。
但到了粒子物理领域嘛
这事儿就比较复杂了。
因为它涉及到了实标量场的正则量子化范畴。
众所周知。
对于一个经典的由n个质点所构成的力学系统,它的广义坐标可定义为qi(i=1,2,.,N)。
其中N=3n为广义坐标空间的维数。
这时候呢。
系统的拉氏函数定义为:
L=L(qi,q˙i),这道公式标注为1。
而对于场Ψ,则它的拉氏密度函数L可定义为:
L=L(Ψ,μΨ)标注为2。
且拉氏密度函L是一个标量,其中场Ψ可以是一个标量、旋量、矢量或张量。
因此在弯曲时空中,一般物质场(引力场除外)的拉氏密度应该可以写成:
L=L(Ψ,μΨ)标注为3。
对于微观系统,一般还不需要考虑引力,所以估且只关心2式。
由2式得场的拉氏函数为:
L=∫L(Ψ,μΨ)d3x
=∫L(Ψ,Ψ,1ctΨ)d3x
=∫L(Ψ,1cΨ˙)d3x把它标注为4。
没错。
看到这里。
想必很多同学已经看明白了。
这个公式的意思很清晰:
穿书爆笑沙雕老六们不说自己有读心术团宠没素质前期疯癫文学he殷娇穿书十年,终于在某一天,觉醒了她穿到一本可歌可泣的爱情故事里,男女主之间的故事一千多章,全员没嘴是狗听了都摇头的程度好消息女主是她姐,结局he坏消息她家被抄了,全死光光了从此,殷娇为了改变书里的结局可谓是绞尽脑汁煞费苦心片段一失踪多年的女主长姐回家,殷娇带领一众人给足了自己姐姐排面我为我姐举大各位书友要是觉得殷娇龙青渊还不错的话请不要忘记向您QQ群和微博里的朋友推荐哦!...
官场失意,情场便得意,逛街都能捡着大美女,岂料此美女竟...
陆天是鲨鱼直播平台的一名小主播。在这一年多的直播时长中积累了小百名老粉丝。这天直播间被老水友要求帮忙登录csgo开箱后,第二天他的脑中传来一阵电子语音。叮检测到宿主叮检测到宿主职业是主播叮幸运直播系统绑定成功!叮幸运直播系统可大幅度提升宿主在游戏中的抽奖概率叮观众们的打赏金额同步作为积分...
仕途之路,争斗不断,人生如戏,戏如人生。如何决胜千里登临权力之巅,请看官场草根的逆袭之路。...
误把属性点全点到了掉宝率上后,萧世发现自己每次击杀,都会掉落一件物品。拍死一只蚊子,掉出了一枚丹药。斩杀一头恶灵,掉出了一本秘籍。砍死一个武者,掉出了对方的修炼心得。...
镇政府门外,一辆黑色帕萨特轿车径直停在了楼门口,从轿车上下来一位年纪大约四十岁上下的妇女来,穿着一身黑色的西装,脚蹬一双曾明瓦亮的黑皮鞋,猛一看,以为是男人呢,仔细一看,脖子里系着一条淡花色的丝巾,才知道是一个干练的女人。...