手机浏览器扫描二维码访问
这个维数有非常明确的物理意义,就是在相互作用中媒介子的维数,或者说媒介子的种类。
例如电磁相互作用的媒介子只有一种就是光子,于是可以它对应的规范场就是U(1)。
而弱相互作用的媒介子有三种W+,W-,Z,于是就可以推测它对于的规范场是SU(2),因为SU(2)是3维的。
也就是.....
电磁力对应U(1)群,弱相互作用力对应SU(2)群,强相互作用力对应SU(3)群。
而SU(3)群中呢,又有一个8维表示,也就是八个生成元。
所以八重法就是指每8个有类似性质的粒子能填入SU(3)群的8维表示中,它把有相近性质的强作用基本粒子分成一个个族,并认为每个族成员应有8个。
粒子物理中的什么介子八重态啦、重子八重态啦都是八重法的范畴,后来还拓展到了十重态。
所以你看到的X子X重态,本质上都是八重法的衍生。
当然了。
眼下这个时期八重法的争议性还很大,因此很快便有专家提出了不同的看法:
“SU3群?洪元同志,按照你的意思,所谓的元强子不是一个两个,而是八个?”
“如果有这么多的所谓元强子存在,那么CP破缺性质要如何解决?——最简单的一个问题,在这种情境下,同态映射的核在数学上岂不是得是二对一了?”
开口的这位学者叫做王竹溪,也是一位华夏知名的物理学家,华夏第一批学部委员。
不过王竹溪之前工作的方向主要偏教育端,和朱洪元的交集并不算深。
听到王竹溪的疑问,朱洪元却微微笑了笑:
“竹溪同志,你的这个问题我能解答。”
只见他从一旁的桌上拿起了纸和笔,飞快的在桌上边写边解释了起来:
“竹溪同志,同态映射的本质其实就是幺正矩阵的映射验证,只要能证明SO(3)群的元素都可以映射到行列式为1的2X2矩阵D12(α,βγ)上就可以了。”
“根据SU(2)群和SO(3)群的定义,SO(3):={O∈GL(3,R)|OTO=13,det(O)=1},SU(2):={U∈GL(2,C)|U??U=12,det(U)=1}。”
“接着找一个三维矢量vv=(v1,v2,v3),可以利用泡利矩阵将其映射成一个2×2无迹厄米矩阵,即vv→rr=viσi=(v3v1??iv2v1+iv2??v3),这个映射的逆映射为vi=12tr[σirr],并且有&(rr)=??|vv|2,以及12tr(rr2)=|vv|2......”
“这个无迹厄米矩阵可以表示SU(2)群上的代数,那么SU(2)群在这个代数上的伴随作用为rr=urru??.其中u∈SU(2)......”
“那么诱导出一个在三维实矢量空间的表示,v′i=12tr(σirr′)=12tr(σiuσju??)vj,v′i=Rji(u)vj,因此,Rji(u)=12tr(σiuσju??).......”
“如此一来,只要证明R(u)∈SO(3)就行了,我们的思路是......”
看着洋洋洒洒大书特书的朱洪元,徐云的脸上也忍不住露出了一丝微妙。
这算是巧合吗?
要知道。
后世华夏量子场论中有关群论在同态映射方面的证明,主要的“操刀者”正是朱洪元来着.....
不过朱洪元编译那套书的时间是在八十年代中期,如今看来很明显,这又是一个因为国际封锁而被埋没的成果。
穿书爆笑沙雕老六们不说自己有读心术团宠没素质前期疯癫文学he殷娇穿书十年,终于在某一天,觉醒了她穿到一本可歌可泣的爱情故事里,男女主之间的故事一千多章,全员没嘴是狗听了都摇头的程度好消息女主是她姐,结局he坏消息她家被抄了,全死光光了从此,殷娇为了改变书里的结局可谓是绞尽脑汁煞费苦心片段一失踪多年的女主长姐回家,殷娇带领一众人给足了自己姐姐排面我为我姐举大各位书友要是觉得殷娇龙青渊还不错的话请不要忘记向您QQ群和微博里的朋友推荐哦!...
官场失意,情场便得意,逛街都能捡着大美女,岂料此美女竟...
陆天是鲨鱼直播平台的一名小主播。在这一年多的直播时长中积累了小百名老粉丝。这天直播间被老水友要求帮忙登录csgo开箱后,第二天他的脑中传来一阵电子语音。叮检测到宿主叮检测到宿主职业是主播叮幸运直播系统绑定成功!叮幸运直播系统可大幅度提升宿主在游戏中的抽奖概率叮观众们的打赏金额同步作为积分...
仕途之路,争斗不断,人生如戏,戏如人生。如何决胜千里登临权力之巅,请看官场草根的逆袭之路。...
误把属性点全点到了掉宝率上后,萧世发现自己每次击杀,都会掉落一件物品。拍死一只蚊子,掉出了一枚丹药。斩杀一头恶灵,掉出了一本秘籍。砍死一个武者,掉出了对方的修炼心得。...
镇政府门外,一辆黑色帕萨特轿车径直停在了楼门口,从轿车上下来一位年纪大约四十岁上下的妇女来,穿着一身黑色的西装,脚蹬一双曾明瓦亮的黑皮鞋,猛一看,以为是男人呢,仔细一看,脖子里系着一条淡花色的丝巾,才知道是一个干练的女人。...